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Abstract: Previous studies on noise-vocoded speech showed that the temporal modulation cues
provided by the temporal envelope play an important role in the perception of vocal emotion.
However, the exact role that the temporal envelope and its modulation components play in the
perceptual processing of vocal emotion is still unknown. To clarify the exact features that the temporal
envelope contributes to the perception of vocal emotion, a method based on the mechanism of
modulation frequency analysis in the auditory system is necessary. In this study, auditory-based
modulation spectral features were used to account for the perceptual data collected from vocal-
emotion recognition experiments using noise-vocoded speech. An auditory-based modulation
filterbank was used to calculate the modulation spectrogram of noise-vocoded speech stimuli, and
ten types of modulation spectral features were then extracted from the modulation spectrograms. The
results showed that there were high similarities between modulation spectral features and the
perceptual data of vocal-emotion recognition experiments. It was shown that the modulation spectral
features are useful for accounting for the perceptual processing of vocal emotion with noise-vocoded
speech.

Keywords: Temporal modulation cue, Modulation spectral feature, Vocal emotion, Noise-vocoded
speech, Speech perception
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1. INTRODUCTION

Speech waves are highly complex signals that transmit

both linguistic information and various nonlinguistic

information, such as vocal emotion. The human auditory

system can ingeniously decode the emotional information

included in speech signals to perceive the emotional state

of speakers. Emotional expression in speech plays an

important role in our daily lives; however, the perceptual

processing of vocal emotion is still not fully clarified at

present.

Previous studies related to the perception of vocal

emotion focused on the acoustic features and sound

patterns of speech signals. Banse and Scherer presented

speech stimuli that contained 14 different emotions to

listeners with normal hearing and asked them to label the

emotion of each stimulus [1]. At the same time, they also

extracted 29 different acoustic features (fundamental

frequency (F0), intensity, speaking rate, duration, time-

averaged spectrum, etc.) for each emotional speech

stimulus. An emotion classification model was constructed

using multiple regression analysis which analyzed the

contributions of each acoustic feature. The results of

discriminant analysis on the basis of this model showed

that the confusion patterns were close to those of human

responses. Huang and Akagi proposed a three-layered

model with semantic primitives as a middle layer between

vocal emotion and acoustic features [2]. In the previous

studies, only the acoustic features based on the source-filter

model (F0 and spectral envelope) and speech waveforms

(intensity and duration) were investigated, regardless of

what kinds of model were used.

In a study on vocal emotion perception by listeners

with cochlear implants and its simulations, it was shown

that such typical acoustic features have difficulty to account

for the human response from cochlear-implant listeners [3].
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Chatterjee et al. carried out vocal-emotion recognition

experiments for cochlear implant listeners and normal

hearing listeners using noise-vocoded speech as a cochlear

implant simulation. They then analyzed the F0, intensity,

and duration of the stimuli to clarify how cochlear implant

listeners process the vocal emotion information included in

speech. As cochlear implants only present a poor spectral

resolution, the acoustic features related to the spectral

envelope (formants, etc.) were not used. The results

showed that the acoustic analyses could not account for

all of the perceptual data from the vocal-emotion recog-

nition experiments. An probable reason is that, for cochlear

implant listeners, the temporal modulation cues provided

by the temporal envelope are used as primary cues,

however, the typical acoustic features can not represent

the features of the temporal envelope well.

The temporal envelope of sound signals has been

proven to be important in auditory system. The signal

processes in the peripheral auditory system can be

computationally modeled as a bandpass filterbank, enve-

lope extraction and amplitude compression [4,5]. Further-

more, Dau et al. proposed a computational model of human

auditory signal processing and perception using a modu-

lation filterbank after the process of temporal envelope

extraction [6,7]. There are both physiological [8] and

psychological [9] evidences that suggest the existence of

a modulation filterbank in the auditory system. The

auditory system has a modulation frequency analyzer

which analyzes the modulation frequency components

of the temporal envelope. On the other hand, Wu et al.

proposed an automatic speech emotion recognition system

using an auditory-based modulation analysis to extract the

modulation spectral features of emotional speech [10]. The

results showed that the modulation spectral features can be

used to represent the features of temporal envelope related

to vocal emotion better than the typical acoustic features.

In our previous study, we investigated the contribution

of temporal modulation cues on the perception of non-

linguistic information using noise-vocoded speech [11].

The results showed that the temporal modulation cues play

an important role in the perception of vocal emotion.

However, the role that temporal envelope is playing in the

perceptual processing of vocal emotion is still unknown.

As there is no harmonic structure, noise-vocoded speech

does not contain the temporal fine structure of original

speech, that is, the information related to F0. The intensity

of noise-vocoded speech stimuli in the experiments was

also normalized. Therefore, similar to the results in [3], the

typical acoustic features cannot be used to account for the

perceptual data collected from the experiments using noise-

vocoded speech. An analysis based on the modulation

frequency analysis mechanism of the auditory system is

necessary. It has been shown that auditory-based modu-

lation spectral features have the potential to account for the

perceptual data of vocal-emotion recognition experiments

[12]. However, the specific relationship between the

modulation spectral features and the perception of vocal

emotion is still unknown.

In this study, the relationship between the modulation

spectral features and the perceptual data of vocal-emotion

recognition experiments [11] was investigated to clarify

the contribution of the modulation spectral features on the

perception of vocal emotion. An auditory-based modula-

tion filterbank was used to calculate the modulation

spectrograms of the temporal envelope of noise-vocoded

speech. Then, ten types of modulation spectral feature

extracted from the modulation spectrograms were ana-

lyzed. Finally, the modulation spectral features and the

perceptual data of vocal emotion recognition were com-

pared to investigate the contribution of temporal modu-

lation cues to the perception of vocal emotion with noise-

vocoded speech. The originality of this study is that we

considered the problem of vocal emotion perception from

the viewpoint of auditory with the use of auditory-based

modulation spectral features rather than from the viewpoint

of speech production with the use of typical acoustic

features.

This paper is organized as follows: Section 2 analyzes

the perceptual data of vocal-emotion recognition experi-

ments in [11]. Section 3 introduces the method for

calculating the modulation spectral features from the

noise-vocoded speech stimuli. Section 4 discusses the

relationship between the modulation spectral features and

the perceptual data. Section 5 summarizes the results and

the discussion.

2. PERCEPTUAL DATA OF VOCAL-
EMOTION RECOGNITION EXPERIMENTS

In our previous study, in order to study the contribution

of temporal modulation cues on vocal-emotion recognition,

we varied the spectral and temporal resolution of noise-

vocoded speech stimuli presented to normal hearing

listeners. The detailed method of signal processing to

generate noise-vocoded speech can be found in [11]. The

Fujitsu Japanese Emotional Speech Database was used.

This database includes five emotions (neutral, joy, cold

anger, sadness, and hot anger) expressed by a professional

actress. The spectral resolution of the noise-vocoded

speech stimuli was manipulated by varying the number

of channels from 4 to 16. The temporal resolution was

manipulated by varying the upper limits of the modulation

frequency from 0 to 64 Hz. The results demonstrated that

the vocal-emotion recognition rates significantly decreased

as the upper limit of the modulation frequency decreased.

Therefore, it was confirmed that the temporal modulation

cues provided by the temporal envelope (in other words,
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the information contained in the modulation frequency

band below 64 Hz) contribute to the perception of vocal

emotion.

To clarify the exact features that the temporal envelope

contributes to the perception of vocal emotion, the current

results regarding the condition of the 64-Hz upper limit of

the modulation frequency and 4 channels noise-vocoded

speech were used as the perceptual data of vocal-emotion

recognition experiments. In this condition, the noise-

vocoded speech stimuli contain all the information in the

modulation frequency band below 64 Hz. Furthermore, the

spectral cues were reduced mostly because we want to

focus on the temporal modulation cues. Figure 1 shows the

vocal-emotion recognition rates of the perceptual data that

was used in this study. The results showed that joy was the

most difficult to recognize and that the mean recognition

rate was close to the chance level (20%). On the contrary,

the recognition rates of sadness and hot anger were higher

than that of the other emotions. The recognition rates of

neutral emotion and cold anger were in the middle of the

other three emotions, however, the recognition rate of cold

anger was much lower than that of neutral.

To better understand the perceptual data, the discrim-

inability index (d0P) of each emotion was calculated from

the mean confusion matrix of the perceptual data (Table 1).

The d0P values shown in Fig. 1 were based on the hit rates

and false alarm rates derived from the confusion matrix, as

follow:

d0P ¼ ZðHÞ �ZðFÞ ð1Þ

where H and F are the hit rate and false alarm rate. Zð�Þ is

the inverse of the normal distribution function. Generally,

high d0P values are derived from high hit rates and low false

alarm rates.

Because of the relatively higher hit rates and lower

false alarm rates, the d0P values of sadness and hot anger

were much higher than those of the other emotions, as seen

in the results for the recognition rates. The d0P value of cold

anger was lowest, due to the low hit rate and high false

alarm rate. The hit rate of joy was the lowest, however, as it

had a low false alarm rate, the d0P value was higher than that

of cold anger. For neutral emotion, the high hit rate and

false alarm rate led to a low d0P value.

For the perception of vocal emotion with noise-

vocoded speech, the temporal modulation cues provided

by the temporal envelope were used as primary cues.

Therefore, in the next section, the modulation spectral

features extracted directly from the modulation spectro-

grams of the temporal envelope were used to account for

the perceptual data.

3. ANALYSIS OF THE MODULATION
SPECTRAL FEATURES

3.1. Modulation Spectrogram

Figure 2 shows the auditory-based process used in this

study to calculate the modulation spectrograms. Emotional

speech signal s was first band-pass filtered using an

auditory-based band-pass filterbank as follows:

skðnÞ ¼ sðnÞ � hkðnÞ ð2Þ

where � denotes the convolution operation, hkðnÞ is the

impulse response of the kth channel and n is the sample

number in the time domain. The bandwidth and boundary

frequencies of the band-pass filters (6th-order Butterworth

infinite impulse response (IIR) filters) were defined using

ERBN (Equivalent Rectangular Bandwidth) and ERBN-

number scales [13]. The boundary frequencies of the band-

pass filters were defined as 3 to 35 ERBN-number with an 8

ERBN bandwidth, and the number of channels was 4.

The temporal envelope of the output signal from each

band-pass filter skðnÞ was extracted using the Hilbert

transformation, and a low-pass filter (2nd-order Butter-

worth IIR filter, cut-off frequency: 64 Hz) was performed

as follows:

ekðnÞ ¼ jskðnÞ þ jH½skðnÞ�j � gðnÞ; ð3Þ

where H denotes the Hilbert transform and, gðnÞ denotes

the impulse response of the low-pass filter. The signal
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Fig. 1 The results of vocal-emotion recognition experi-
ment in [11] on the condition that the upper limit of
modulation frequency was 64 Hz and the number of
channels was 4.

Table 1 Mean confusion matrix of the perceptual data
(in percent). Confusion matrix is presented as percent-
age with the stimuli organized vertically and the
response categories organized horizontally.

Neutral Joy Cold anger Sadness Hot anger

Neutral 67.27 3.646 20.00 6.364 2.727
Joy 22.73 21.82 18.18 1.818 35.45

Cold anger 33.64 1.818 40.00 20.00 4.546
Sadness 4.546 0 5.455 90.00 0

Hot anger 16.36 2.727 5.455 0.9091 74.55
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processing methods of bandpass filterbank and temporal

envelope extraction was as same as the methods used in

[11].

The next step involved decomposing ekðnÞ into several

modulation frequency bands by using a modulation filter-

bank:

Ek;mðnÞ ¼ fmðnÞ � ðekðnÞ � ekðnÞÞ; ð4Þ

where m is the channel number of the modulation filter,

fmðnÞ is the impulse response of the modulation filterbank,

and ekðnÞ is the time-averaged amplitude of ekðnÞ. The

0 Hz component was removed because we only focused on

the dynamic components of the temporal envelope. The

modulation filterbank consisted of six filters (one low-pass

filter and five band-pass filters). The boundary frequencies

of the filters were spaced on an octave frequency band from

2 to 64 Hz. Figure 3 shows the frequency responses of the

modulation filterbank. Finally, the root mean square of

Ek;mðnÞ calculated as the modulation spectrogram,

Ek;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼0

E2
k;mðnÞ

vuut ; ð5Þ

where N is the length of the speech signal sðnÞ. Ek;m was

then used to calculate modulation spectral features.

Figure 4 shows examples of the modulation spectro-

grams of the speech with five different emotions from the

Fujitsu database. The results show that each different

emotion had different characteristics in the modulation

spectrograms. The modulation spectrogram for sadness

speech had significantly more low acoustic and modulation

frequency energy. Contrarily, the modulation spectrogram

of hot anger speech had more high acoustic and modulation

frequency energy. These results should be related to the

facts showed in [14,15] that sadness speech has lower high

frequency energy and speech rate and anger speech has

higher high frequency energy and speech rate. These

results should be consistent with the perceptual data

showing that sadness and hot anger had relatively higher

d0P values. However, it is difficult to directly connect the

results of the modulation spectrograms and the perceptual

data. Therefore, to quantitatively investigate the contribu-

tions of the modulation spectrogram to the perception of

vocal emotion, the modulation spectral features extracted

from the modulation spectrograms were then analyzed.

3.2. Modulation Spectral Features

Two kinds of modulation spectral feature were calcu-

lated by analyzing the modulation spectrograms in the

acoustic frequency and modulation frequency domains. In

the acoustic frequency domain, the first feature was the

modulation spectral centroid (MSCRm), which is defined as

follows:

MSCRm ¼
�K

k¼1kEk;m

�K
k¼1Ek;m

; ð6Þ

where K is the number of the acoustic frequency bands

that is 4. The MSCRm indicates the center of the spectral

balance across acoustic frequency bands (k).

The modulation spectral spread (MSSPm) was then

calculated by:

MSSPm ¼
�K

k¼1½k �MSCRm�2Ek;m

�K
k¼1Ek;m

: ð7Þ

The MSSPm represents the spread of the spectrum around

its MSCRm as the 2nd order moment.

Two other higher-order features, modulation spectral

skewness (MSSKm) and kurtosis (MSKTm), were also

calculated. The MSSKm describes the degree of asymmetry

of the modulation spectrogram, which was calculated from

the 3rd order moment:

MSSKm ¼
�K

k¼1½k �MSCRm�3Ek;m

�K
k¼1Ek;m

: ð8Þ

Fig. 2 Schematic diagram of the auditory-based process to calculate the modulation spectrogram.
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Fig. 3 The frequency response of the modulation filterbank.
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The MSKTm gives a measure of the peakedness of the

modulation spectrogram, which was calculated from the

4th order moment:

MSKTm ¼
�K

k¼1½k �MSCRm�4Ek;m

�K
k¼1Ek;m

: ð9Þ

In the modulation frequency domain, the first feature

was the MSCRk which was the barycenter of the

modulation spectrum in each acoustic frequency band.

Different from the MSCRm which was calculated across the

acoustic frequency bands (k), the MSCRk was calculated

across the modulation frequency bands (m).

MSCRk ¼
�M

m¼1mEk;m

�M
m¼1Ek;m

: ð10Þ

Then, the other three higher-order features of the modu-

lation spectrograms in the modulation frequency domain

(MSSPk, MSSKk, and MSKTk) were calculated as follows:

MSSPk ¼
�M

m¼1½m�MSCRk�2Ek;m

�M
m¼1Ek;m

; ð11Þ

MSSKk ¼
�M

m¼1½m�MSCRk�3Ek;m

�M
m¼1Ek;m

; ð12Þ

MSKTk ¼
�M

m¼1½m�MSCRk�4Ek;m

�M
m¼1Ek;m

; ð13Þ

where M is the number of channels in the modulation

filterbank which is six. Figure 5 shows an example of

calculating the modulation spectral centroid in the acoustic

frequency domain (MSCRm) and the modulation frequency

domain (MSCRk). For the modulation spectral features in

the acoustic frequency domain (modulation spectral fea-

tures with subscript m), the modulation frequency channel

was fixed, and the features were calculated on the basis of

the acoustic frequency axis. On the contrary, for the

modulation spectral features in the modulation frequency

domain (modulation spectral features with subscript k), the

acoustic frequency channel was fixed, and the features

were calculated based on the modulation frequency axis.

The last two modulation spectral features in the

acoustic frequency and modulation frequency domains
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Fig. 4 Examples of the time-average modulation spectrogram of different emotional speech.

Fig. 5 An example of calculate the modulation spectral
centroid of modulation spectrogram on the acoustic
frequency domain (MSCRm) and the modulation
frequency domain (MSCRk).
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were modulation spectral tilt (MSTLm and MSTLk), which

are the linear regression coefficient obtained by fitting a

first-degree polynomial to the modulation spectrograms.

Finally, to investigate the relationship between the

modulation spectral features and the perceptual data, the

discriminability index of the modulation spectral features

(d0MSF) were also calculated by the following equation:

d0MSF ¼
j�emotion1 � �emotion2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð�2

emotion1 þ �2
emotion2Þ

s ; ð14Þ

where, � and �2 are the mean value and variance of a

modulation spectral feature (taken across the 10 utterances

of each emotion). The mean value of all the d0MSF values

for each emotion was computed as an approximate measure

of the net discriminability of the modulation spectral

features (see Table 2). This d̂0MSF value represents the

mean distance of a modulation spectral feature between

different emotions.

3.3. Similarities between the Perceptual Data and

Modulation Spectral Features

The centered cosine similarity between d0P (Fig. 1)

and d̂0MSF were calculated to investigate the relationship

between modulation spectral features and the perception of

vocal emotion with noise-vocoded speech. The similarity

was defined as follow:

AðemÞ ¼ d0PðemÞ �
1

5
�5

em¼1d
0
PðemÞ; ð15Þ

BðemÞ ¼ d̂0MSFðemÞ �
1

5
�5

em¼1d̂
0
MSFðemÞ; ð16Þ

Similarity ¼
�5

em¼1AðemÞBðemÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5

em¼1AðemÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5

em¼1BðemÞ
2

q ; ð17Þ

where, em is the emotion which could be neutral, joy, cold

anger, sadness, and hot anger. Tables 3 and 4 show the

results of the similarities of the modulation spectral

features in the acoustic frequency and modulation fre-

quency domains, respectively. Figure 6 shows the highest

similarity of each modulation spectral feature (taken

across all the acoustic frequency or modulation frequency

channels). The results showed that there were high

similarities between the modulation spectral features and

the perceptual data. For some modulation spectral features,

the similarities were close to 1. These results suggest that

the modulation spectral features are useful in accounting

for the perceptual data of vocal-emotion recognition

experiment using noise-vocoded speech.

4. DISCUSSION

The d0P values of the perceptual data obtained from

vocal-emotion recognition experiments represent the psy-

chological distance between the emotions for participants.

Table 2 An example of the d̂0MSF value of each emotion
for MSCRm, m ¼ 1 on acoustic frequency domains.

Neutral Joy Cold anger Sadness Hot anger

Neutral 0 2.5793 1.0874 1.6855 6.0974
Joy 2.5793 0 0.2151 2.9507 4.1397

Cold anger 1.0874 0.2151 0 2.1366 2.1852
Sadness 1.6855 2.9507 2.1366 0 4.7163

Hot anger 6.0974 4.1397 2.1852 4.7163 0

d̂0MSF 2.8624 2.4712 1.4061 2.8723 4.2846

Table 3 The similarities between modulation spectral
features on the acoustic frequency domain and the
perceptual data.

m 1 2 3 4 5 6

MSCRm 0.5381 0.6287 0.7096 0.8854 0.7079 0.1662
MSSPm �0:1745 0.8341 0.8451 0.8805 0.8817 0.7908
MSSKm 0.9874 0.9448 0.9601 0.9254 0.9454 0.6092
MSKTm 0.8858 0.9104 0.9059 0.9006 0.9405 0.5531
MSTLm 0.6619 0.8734 0.5452 0.8742 0.9050 0.5531

Table 4 The similarities between modulation spectral
features on the modulation frequency domain and the
perceptual data.

k 1 2 3 4

MSCRk �0:3996 0.3628 0.7564 �0:5762

MSSPk �0:2670 0.8252 0.8632 0.8900
MSSKk �0:2696 0.7603 0.8068 �0:6825

MSKTk 0.1213 0.8402 0.8405 0.9191
MSTLk 0.9949 0.9557 0.9992 �0:3721
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Fig. 6 The highest similarity of each modulation spec-
tral feature (taken across all the acoustic or modulation
frequency channels).
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The d̂0MSF values of the modulation spectral features

represent the physical distance of the modulation spectral

features between different emotions. The probability dis-

tribution functions (PDFs) of the modulation spectral

features with the highest similarity showed in Fig. 6 were

estimated to discuss the reason for the high similarity

between the modulation spectral features and the percep-

tual data (Fig. 7).

Figure 7(a) shows that the MSCRm for hot anger

speech was highest, and the MSCRm of sadness speech

was lowest in the 4th modulation frequency channel. In

addition, the distributions of the other emotions (neutral,

joy, and cold anger) overlapped. Similar phenomenon also

appeared in the distribution of MSTLm. The reason for this

is that hot anger speech had more high-acoustic frequency

energy, and sadness speech had more low-acoustic fre-

quency energy. The distributions of neutral, joy and cold

anger speech on the acoustic frequency domain were

similar. These results were consistent with the perceptual

data that sadness and hot anger stimuli had higher d0P values

and that the d0P values of other emotions were much lower.

On the contrary, for the other high-order features

MSSPm (Fig. 7(b)), MSSKm (Fig. 7(c)), and MSKTm

(Fig. 7(d)) in the acoustic frequency domain, the PDFs of

hot anger speech were lowest and the PDFs of sadness

speech were highest. The high-order features in the

modulation frequency domain MSSPk (Fig. 7(g)) and

MSKTk (Fig. 7(i)), also showed a similar trend. These

results showed that the spread and peakedness of sadness

speech in both the acoustic frequency and modulation

frequency domains were higher than those of the other

emotions. Moreover, the PDFs of joy and hot anger speech

overlapped, which were consistent with the results of

confusion matrix (Table 1) that nearly 35% of the joy

stimuli were recognized as hot anger.

It was also shown that the similarities of the modula-

tion spectral features in the acoustic frequency domain

(Table 3) in the 4th and 5th modulation frequency channel

(from 8 to 32 Hz) were much higher. Similar to the results

in [11], high-modulation frequency band was shown to be

more important to the perception of vocal emotion with

noise-vocoded speech. The high-modulation frequency

components are related to auditory roughness, which

should affect the speech quality of noise-vocoded speech.

The high-modulation frequency components should

also affect the modulation spectral features in the modu-

lation frequency domain. Hot anger speech had much more

high-modulation frequency components that resulted in

higher MSCRk. On the contrary, the MSCRk of sadness

speech should be lower because sadness speech had much

less high-modulation frequency components. The degree of

asymmetry (MSSKk) of sadness speech should be higher

than that of hot anger speech as the modulation spectro-

gram for sadness speech was central in the low-modulation

frequency band. The shapes of the modulation spectro-

grams of the other three emotions in the modulation

frequency domain were similar.

To summarize the results: hot anger speech has more

high acoustic frequency and modulation frequency com-

ponents; sadness speech has less high acoustic frequency

and modulation frequency components; regarding hot

anger and sadness speech, the distributions of the

modulation spectrogram for neutral, joy, and cold anger

speech are similar. These physical characteristics are

consistent with the perceptual data which showed that

sadness and hot anger stimuli had higher d̂0MSF values and

the d̂0MSF values of neutral, joy, and cold anger stimuli

were much lower. Therefore, there were high similarities

between the modulation spectral features and the percep-

tual data.
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Fig. 7 Estimated probability distribution function of modulation spectral features for each emotion. Only the modulation
spectral features with the highest similarity showed in Fig. 6 are demonstrated here.
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Modulation spectral features have been shown to be

useful in accounting for the perception of vocal emotion.

In this study, the modulation spectral features of time-

averaged modulation spectrograms were analyzed. The

modulation spectrograms were 4-dimensional data con-

taining information on acoustic frequency, modulation

frequency, amplitude, and time. It is necessary to analyze

the details regarding modulation spectrograms in time

domain. However, as the modulation spectrograms were

4-dimensional data, it would be difficult to extract the

features related to nonlinguistic information from them.

Deep learning may be a good solution for analyzing the

modulation spectrogram in the time domain. The modu-

lation spectral features should be derived from human

vocal organs. It is also necessary to connect the auditory-

based modulation spectral features to the mechanism of

speech production to investigate the relationship between

modulation spectral features and the perception of not only

noise-vocoded speech but also normal speech.

5. SUMMARY

In this study, the relationship between the auditory-

based modulation spectral features and perceptual data of

vocal-emotion experiments using noise-vocoded speech

was investigated to clarify the exact features that the

temporal envelope contributes to the perception of vocal

emotion. The discriminability indices (d0P and d̂0MSF) of

each emotion were calculated from the modulation spectral

features and the mean confusion matrix of the perceptual

data. It was shown that for both the modulation spectral

features and the perceptual data, the d0P and d̂0MSF values of

sadness and hot anger speech were higher than those of

neutral, joy, and cold anger speech. These results led to

high similarities between the modulation spectral features

and the perceptual data. This suggests that the modulation

spectral features play an important role in the perception of

vocal emotion with noise-vocoded speech. The modulation

spectral features have shown to be useful in accounting for

the perceptual processing of the temporal modulation cues

provided by the temporal envelope of speech.
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