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Abstract: In one study on vocal emotion recognition using noise-vocoded speech (NVS), the high
similarities between modulation spectral features (MSFs) and the results of vocal-emotion-recognition
experiments indicated that MSFs contribute to vocal emotion recognition in a clean environment
(with no noise and no reverberation). Other studies also clarified that vocal emotion recognition using
NVS is not affected by noisy reverberant environments (signal-to-noise ratio is greater than 10 dB and
reverberation time is less than 1.0 s). However, the contribution of MSFs to vocal emotion recognition
in noisy reverberant environments is still unclear. We aimed to clarify whether MSFs can be used to
explain the vocal-emotion-recognition results in noisy reverberant environments. We analyzed the
results of vocal-emotion-recognition experiments and used an auditory-based modulation filterbank
to calculate the modulation spectrograms of NVS. We then extracted ten MSFs as higher-order
statistics of modulation spectrograms. As shown from the relationship between MSFs and vocal-
emotion-recognition results, except for extremely high noisy reverberant environments, there were
high similarities between MSFs and the vocal emotion recognition results in noisy reverberant
environments, which indicates that MSFs can be used to explain such results in noisy reverberant
environments. We also found that there are two common MSFs (MSKTk (modulation spectral
kurtosis) and MSTLk (modulation spectral tilt)) that contribute to vocal emotion recognition in all
daily environments.

Keywords: modulation spectral feature; vocal emotion recognition; noise-vocoded speech; noisy
reverberant environment

1. Introduction

The ability to correctly identify the emotion of a speaker is an indispensable aspect
of our daily lives, especially in situations where the speaker’s facial expressions and
gestures are not visible (when only the voice is observed). Thus, to obtain high-quality
communication, it is necessary to clarify the mechanism of vocal emotion recognition.

Previous studies on vocal emotion recognition were based on acoustic features and
sound patterns. For example, one study investigated the acoustic features on the basis of
the source-filter model (fundamental frequency (F0), speaking rate, intensity, duration, etc.)
to illustrate that the confusion patterns were close to those found for listener-judges [1]. To
model the expressive perceptions of speech, Huang and Akagi proposed a three-layered
model with acoustic features in the bottom layer [2]. The results confirmed significant
relationships between expressive speech, semantic primitives, and acoustic features.

The acoustic features required for the vocal emotion recognition of some listeners
cannot be satisfied, such as for listeners who use cochlear implants (CIs). CIs have proved
to be very useful artificial organs for listeners with hearing loss because CIs enable users to
achieve speech intelligibility at a high level in a clean auditory environment. In a study
on vocal emotion perception involving listeners with CIs, acoustic features had difficulty
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accounting for the human response from the CI listeners [3]. The probable reason is that
CIs provide the temporal amplitude envelope (TAE) information as a primary cue but
with the loss of spectro-temporal detail, which is needed to support the perception of
harmonic pitch. As a result, pitch-dominant aspects of speech, such as vocal emotion and
lexical tone recognition, are weakly transmitted by CIs [4]. For the normal cochlea, speech
is decomposed into narrowband signals, each with a relatively slowly varying TAE and
temporal fine structure (TFS). As illustrated in previous research, certain hearing problems,
such as hearing loss with age, affect the processing of TFS information but do not affect the
processing of TAE information [5]. The above insights have revealed the insufficiency of
acoustic features, as they leave out the important contributions of TAE to the vocal emotion
recognition of listeners. They also highlight the need to clarify the important role of TAE
information and its cues in vocal emotion recognition. It is beneficial to improve the vocal-
emotion-recognition quality of CI listeners and to elucidate the vocal-emotion-recognition
mechanism of normal hearing.

To clarify how TAE information works in the perception of speech information, both
modern physiological [6] and psychological [7] evidence suggest the existence of a modula-
tion filterbank in the auditory system, which is used to analyze the modulation-frequency
components of the TAE. In the peripheral hearing system, the cochlea converts speech
signals from the middle ear into the corresponding neural signals [5]. The signal processes
in the peripheral auditory system can be computationally modeled as a band-pass filter-
bank, envelope extraction, and amplitude compression [8,9]. On the basis of this peripheral
auditory system, previous studies have proved that TAE information of speech signals
plays an important role in vocal emotion recognition [10–13].

Zhu et al. used auditory-based modulation analysis to extract the modulation spectral
features (MSFs) from emotional speech and investigated the contribution of MSFs to vocal
emotion recognition using noise-vocoded speech (NVS) in a clean environment with no
noise and no reverberation [14,15]. The results indicated that there were high similarities
between MSFs and the results from vocal-emotion-recognition experiments, suggesting that
the MSFs of TAE are useful in accounting for the perceptual processing of vocal-emotion
with NVS. Unfortunately, daily sound environments contain noise and reverberation, and
it is well known that noise and reverberation have significant effects on the perception
of speech. For CI listeners, a previous study found that the comprehension of simulated
speech from CIs was significantly lower than that of the normal speech (original speech) due
to the addition of noise and reverberation [16]. Previous research related to the perception
of nonlinguistic information of NVS suggested that, except for extremely poor sound
conditions, in daily environments (signal-to-noise ratio (SNR) is greater than 10 dB and
reverberation time (TR) is less than 1.0 s), there were no significant effects of noise and
reverberation in nonlinguistic information recognition [17].

However, how the noise and reverberation affect the contribution of MSFs to the
perception of vocal-emotion is still unclear. We used qualitative and quantitative analyses,
focusing on the relationship between the results of vocal-emotion-recognition experiments
and MSFs to investigate the following two research questions:

1. Can MSFs be used to explain the vocal-emotion-recognition results in noisy reverber-
ant environments?

2. Are there common MSFs that contribute to vocal emotion recognition in all daily
environments?

This paper is organized as follows: Section 2 introduces the results of vocal-emotion-
recognition experiments obtained from previous research. Section 3 presents the analysis
of these vocal emotion recognition experiments. Section 4 presents the analysis of MSFs.
Section 5 describes the qualitative and quantitative analyses of the relationship between
MSFs and the vocal-emotion-recognition results. Section 6 discusses the contribution of
common MSFs to vocal emotion recognition. Section 7 summarizes the results.
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2. Results of Vocal-Emotion-Recognition Experiments
2.1. Speech Data

The results of vocal-emotion-recognition experiments were collected from a previ-
ous study [17]. Zhu et al. used the Fujitsu Japanese Emotional Speech Database as the
original speech data. In this database, a professional actress’s sentences are expressed,
and each sentence contains one of five emotions (neutral, joy, cold anger, sadness, and hot
anger). In these experiments, the experimental stimuli of NVS were in three environments:
noisy, reverberant, and noisy reverberant. The experimental stimuli were created with the
following procedure.

To produce noisy speech, Zhu et al. used stationary noise (white Gaussian noise), and
the adjusted noise was added to the speech so that the SNRs of the original speech and
noise would differ. As the noise conditions, SNRs of ∞, 20, 15, 10, 5, 0, and −5 dB were
selected as the noise conditions, and SNR = ∞ means a clean environment without noise.
Therefore, there were a total of seven noise conditions.

To produce reverberant speech, they used a statistical room-impulse response (Schroeder
model) [18] and convoluted five types of room-impulse responses with TR of 0.1, 0.2, 0.5, 1.0,
and 2.0 s into the original speech to make experimental stimuli in the reverberant environ-
ment. Since a no-reverberation environment, i.e., TR = 0 s, was added, there were a total of
six reverberation conditions.

For the noisy reverberant environment, a reverberant speech was created by convolv-
ing three types of room-impulse responses with TR of 0.5, 1.0, and 2.0 s into the original
speech. Five types of constant noise (white Gaussian noise) with SNRs of 20, 10, 5, 0, and
−5 dB were then added to the reverberant speech. From the combination of the above
cases, there were a total of 15 reverberation conditions.

After adding noise and reverberation, the experimental stimuli of NVS were created.
NVS is speech obtained by driving TAE information using band-limited random noise as a
carrier signal [15,17,19]. NVS is primarily used to simulate the perception of speech as heard
from CIs for normal-hearing listeners. Even in daily noise reverberation environments (SNR
is greater than 10 dB and TR is less than 1.0 s), the impact of these types of disturbances on
experimental emotional perception using NVS was not significant [17]. Figure 1 shows the
generation of the NVS stimuli. As the input signal, noisy reverberant emotional speech was
divided into several frequency bands by using an auditory filterbank that simulates human
frequency selectivity. The 6th-order Butterworth infinite impulse response (IIR) band-pass
filters (BPFs) were used as the auditory filterbank. The bandwidth of each filter was that of
the human auditory filter, and the order of the filters was determined in accordance with
the equivalent rectangular bandwidth (ERBN) and ERBN-number scale [20]. The unit of
ERBN-number is Cam. The relationship between ERBN-number and acoustic frequency is
defined as

ERBN−number = 21.4log10

(
4.37f
1000

+ 1
)

, (1)

where f is the frequency in Hz, and subscript N indicates the characteristics of normal
hearing. The signal was then constructed at the boundary frequencies of the BPFs, which
were defined as an ERBN-number from 3 to 35 Cam with bandwidths of 2 ERBN, and the
number of channels was 16.

In each frequency band, the TAE of the signal was extracted using the Hilbert transform
and a 2nd-order Butterworth IIR low-pass filter (LPF) with a cut-off frequency of 64 Hz.

The TAE in each channel was then served with the band-limited noise generated by
band-pass filtering white Gaussian noise at the same boundary frequency. All amplitude-
modulated noise was summed to generate the NVS stimulus. The sampling frequency for
stimulus creation was unified at 20 kHz.
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Figure 1. Schematic diagram of noise-vocoded method used for generating experiment stimuli (NBN:
narrow band noise). BPFs were defined as ERBN-number from 3 to 35 Cam with bandwidths of
2ERBN. Number of channels was 16 [17].

2.2. Participants and Procedure

In Zhu et al.’s experiment, all experimental stimuli were presented to the participants
randomly, and they were instructed to choose one emotion from five categories. The stimuli
were presented only once, and no repetition was allowed. Five sentences were prepared
for each emotion.

Ten native Japanese speakers with normal hearing (seven men and three women, all
in their 20 s) were recruited for the experiments.

2.3. Results of Vocal Emotion Recognition Experiments in Noisy and/or Reverberant Environments

Figure 2 shows the results of the vocal-emotion-recognition experiment in the noisy
environment conducted by Zhu et al. [17]. The horizontal axis shows the SNR, and the
vertical axis shows the vocal-emotion-recognition rate. In Figures 2–4, the circles indicate
the mean of the vocal-emotion-recognition rate, and the error bars indicate the standard
error. Except in extremely high noisy environments, there were no significant effects of
noise that could affect vocal emotion recognition under daily noisy conditions (SNR is
greater than 0 dB).
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Figure 2. Vocal−emotion−recognition results in noisy environments [17].
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Figure 3 shows the results from the vocal-emotion-recognition experiment in the
reverberant environment. The horizontal axis shows the TR conditions, and the vertical
axis shows the vocal-emotion-recognition rate. Except in extremely high noisy reverberant
environments, there were no significant effects of reverberation that could affect vocal
emotion recognition under daily reverberant conditions (TR is less than 2.0 s).
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Figure 3. Vocal−emotion−recognition results in reverberant environments [17].

Figure 4 shows the results of the vocal-emotion-recognition experiments in the noisy
reverberant environment. Except in extremely high noisy reverberant environments, there
were no significant effects of noise and reverberation that could affect vocal emotion
recognition under daily noise and reverberation conditions (SNR is greater than 10 dB and
TR is less than 1.0 s).
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Figure 4. Vocal−emotion−recognition results in noisy reverberant environments [17].
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From above vocal-emotion-recognition experiments in noisy reverberant environ-
ments, it was found that except under extremely high noisy reverberant conditions, there
were no significant effects of noise and reverberation in vocal emotion recognition under
daily noise and reverberant conditions.

3. Analysis of Vocal-Emotion-Recognition Results

The calculation and analysis approach used in this study were the same in a previous
study [15]. As shown in Figure 5, to better understand the above vocal-emotion-recognition
results, we calculated the discriminability index (d′P) for emotion recognition from the
confusion matrix of the results. The d′P were based on the hit rates and false-alarm rates
derived from the confusion matrix as follows:

d′p = Z(H)−Z(F), (2)

where H and F are the hit rate and false-alarm rate, respectively, and Z(·) is the inverse of
the normal distribution function. Generally, high d′P values are derived from high hit rates
and low false-alarm rates.

Vocal-emotion-recognition 
results

Recognition 
rate 

Mean confusion 
matrix 

Discriminability index 
(𝑑!" ) of perceptual data

Figure 5. Process of calculating the discrimination index of experimental results.

4. Analysis of Modulation Spectral Features

To extract MSFs from emotional speech signals, it is first necessary to calculate the
modulation spectrogram using a modulation filterbank. Figure 6 shows the modulation
process we used. Emotional speech signals s were divided into several frequency bands by
using an auditory-based band-pass filterbank:

sk(n) = s(n) ∗ hk(n), (3)

where * denotes the convolution operator, hk(n) is the impulse response of the kth channel,
and n is the sample number in the time domain. The bandwidth and boundary frequencies
of the 6th-order Butterworth IIR BPFs were the same as those of the auditory filterbank
mentioned in Section 2.1. The boundary frequencies of the BPFs were defined as the
ERBN-number from 3 to 35 Cam with an 8 ERBN bandwidth, and the number of channels
was four.

The temporal envelope of the output signal from each BPF sk(n) was extracted using
the Hilbert transform, and a 2nd-order Butterworth IIR LPF (cut-off frequency 64 Hz) was
used as follows:

ek(n) = LPF[|sk(n) + jH[sk(n)]|], (4)

whereH denotes the Hilbert transform.
The next step involved decomposing the temporal envelope into several modulation-

frequency bands by using a modulation filterbank:

Ek,m(n) = gm(n) ∗ (ek(n)− ek(n)), (5)

where m is the channel number of the modulation filter, gm(n) is the impulse response of the
modulation filterbank, and ek(n) is the time-averaged amplitude of ek(n). The modulation
filterbank consisted of six filters (one LPF and five BPFs). The boundary frequencies of the
filters were spaced on an octave frequency band from 2 to 64 Hz.
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The root-mean square (RMS) of Ek,m(n) was calculated as the modulation spectrogram,

Ēk,m =

√√√√ 1
N

N

∑
n=1

E2
k,m(n), (6)

where N is the length of the speech signal s(n). The Ēk,m was then used to calculate
modulation spectral features later.
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Figure 6. Process of calculating the discrimination index of MSFs [15].

In the above analysis, the modulation spectrogram of modulation speech signals and
the confusion matrix of the vocal-emotion-recognition results could provide qualitative
evidence to clarify the contribution of modulation information of TAE to vocal emotion
recognition. In the subsequent analysis, the similarity between the discriminability index
of the vocal-emotion-recognition results (d′P) and MSFs (d′MSF) was then calculated to
provide quantitative evidence.

Ten MSFs should be extracted from the modulation spectrograms. Ten are those in the
acoustic-frequency domain (the subscript is m) and in the modulation-frequency domain
(the subscript is k): the modulation spectral centroid (MSCRm/k), modulation spectral
spread (MSSPm/k), modulation spectral skewness (MSSKm/k), and modulation spectral
kurtosis (MSKTm/k), which are defined as follows:

MSCRm =
∑K

k=1 kĒk,m

∑K
k=1 Ēk,m

(7)

MSSPm =
∑K

k=1[k−MSCRm]2Ēk,m

∑K
k=1 Ēk,m

(8)

MSSKm =
∑K

k=1[k−MSCRm]3Ēk,m

∑K
k=1 Ēk,m

(9)

MSKTm =
∑K

k=1[k−MSCRm]4Ēk,m

∑K
k=1 Ēk,m

(10)

MSCRk =
∑M

m=1 mĒk,m

∑M
m=1 Ēk,m

(11)

MSSPk =
∑M

m=1[m−MSCRk]
2Ēk,m

∑M
m=1 Ēk,m

(12)

MSSKk =
∑M

m=1[m−MSCRk]
3Ēk,m

∑M
m=1 Ēk,m

(13)

MSKTk =
∑M

m=1[m−MSCRk]
4Ēk,m

∑M
m=1 Ēk,m

, (14)
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The final two MSFs in the acoustic-frequency and modulation-frequency domains were
modulation spectral tilts (MSTLm and MSTLk), which are the linear regression coefficients
obtained by fitting the first-degree polynomial to the modulation spectrograms. Figure 7
shows an example of calculating MSCRm and MSCRk.
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Figure 7. Calculation example of MSCRm and MSCRk [15].

The discriminability indexes of the MSFs (d′MSF) were then calculated using the following:

d′MSF(em1, em2) =
|µem1 − µem2|√
1
2 (σ

2
em1 + σ2

em2)
, (15)

where µ and σ2 are the mean and variance of one MSF (taken across the 10 utterances
of each emotion), em1 and em2 are two different emotions. The d′MSF(em1, em2) is the
discriminability index of one MSF between two different emotions. The d̄′MSF(em) is the
mean of all the d′MSF between one emotion and other four emotions for each emotion,
which was computed as the approximate measure of the net discriminability of the MSFs.
The d̄′MSF(em) represents the mean distance of the MSFs between different emotions.

We calculated the similarity value to quantitatively evaluate the relationship between
the vocal emotion recognition results and MSFs:

Similarity =
∑5

em=1 A(em)B(em)√
∑5

em=1 A(em)2
√

∑5
em=1 B(em)2

(16)

A(em) = d′p(em)− 1
5

5

∑
em=1

d′p(em) (17)

B(em) = d̄′MSF(em)− 1
5

5

∑
em=1

d̄′MSF(em), (18)

where d′p(em) is the discriminability index (d′p) for different emotions, as shown in Equation (2).
In the above equations, em is the emotion, which could be 1 (neutral), 2 (joy), 3 (cold anger), 4
(sadness), or 5 (hot anger).
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5. Results
5.1. Qualitative Analysis: Modulation Spectrogram and Discrimination Index of
Vocal-Emotion-Recognition Results

From the analysis of the modulation spectrogram and vocal emotion recognition
results, we can initially clarify the relationship between these results and the modula-
tion spectrum. We have to turn the time-averaged modulation spectrogram mentioned
in Section 4 into a three-dimensional modulation representation to analyze the energy
change over the modulation- and acoustic-frequency channels. According to the conclu-
sions of Zhu et al.’s study that daily noise and reverberation cannot affect vocal emotion
recognition [17], we selected SNR = 5 dB, TR = 1.0 s, SNR = 10 dB, and TR = 0.5 s
as the representative daily conditions of the noisy, reverberant, and noisy reverberant
environments. The results are shown in Figure 8. Figure 8a–d represents the four environ-
ments (including that with no noise or reverberation, i.e., clean), and in each environment,
the results of the time-averaged modulation representations are displayed from left to
right in the order of neutral, joy, cold anger, sadness, and hot anger. The x-axis denotes
six modulation-frequency channels, the y-axis denotes four acoustic-frequency channels,
and the values of the z-axis denote the RMSs of modulation spectrograms, where each one
is the average over all the time frames for an emotion.

(a)

(b)

(c)

(d)

Figure 8. Time-average modulation representation in (a) a clean environment, (b) noisy environment
(SNR = 5 dB), (c) reverberant environment (TR = 1.0 s), and (d) noisy reverberant environment
(SNR = 10 dB, TR = 0.5 s). MF channel denotes six modulation-frequency channels, AF channel
denotes four acoustic-frequency channels.
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As Figure 8 illustrates, in the clean environment, neutral speech produced a peak of
power around the first and second modulation-frequency channels (frequency range: 0
to 4 Hz), which is consistent with previous research; the power is mostly concentrated at
the lower modulation-frequency channel with a peak at 4 Hz for neutral emotion [21–23],
and the peak shifted to a higher modulation-frequency channel for joy and hot anger,
indicating that joy and hot anger have faster speaking rates and higher RMSs. In all
environments, neutral, joy, cold anger, and hot anger speech had the same power pattern
over acoustic-frequency channels, which is shaped like a mountain. In the second and
third acoustic-frequency channels, these four categories of emotional speech had higher
power, but lower power in the first and four acoustic-frequency channels. Due to the same
power patterns, these emotional speeches may not be easily distinguishable in subsequent
analysis. However, neutral, joy, cold anger, and hot anger speech also had the same power
patterns over all modulation-frequency channels, which are lower and stable. For sad
speech in all environments, RMSs in the second and third acoustic-frequency channels
were lower than in the first and fourth acoustic-frequency channels. The RMS patterns for
sadness are shaped like a valley. In other words, sad speech has a different power pattern
from the other four categories of emotional speech, which indicates that sad speech might
also be easily recognized in subsequent analysis.

To explain how challenging it was people to distinguish different emotional speeches
in the vocal-emotion-recognition experiments, as shown in Tables 1 and 2, we calculated
the confusion matrix and discrimination index of the vocal emotion recognition results in
the noisy reverberant environment (under the conditions mentioned in Section 2, which
do not affect vocal emotion recognition). In Table 1, there are four sub-tables for the four
environments. In each sub-table, the rows represent the speech stimuli of the five categories
of emotional speech, the columns represent the vocal-emotion-recognition results of the
participants, and the values are the ratio of the number of times the subjects chose this
emotion as the answer to the total answers (in percent). The diagonal values are the correct
recognition rates for the emotions, and the other values are the percentages of these emo-
tions misrecognized as other emotions. The higher the correct recognition rate, the easier
it is to recognize this emotion. In Table 2, the rows represent the same four environments
as in Table 1, and the columns represent the five categories of emotional speech, and each
value represents the discrimination index of that emotion in that environment. From the
equation of discrimination index in Section 3, the higher the discrimination index value,
the easier to distinguish this emotion from all emotion categories.

As Table 1 shows, in almost all environments, sad speech had higher correct recog-
nition rates than other emotional speech, which suggests that sadness may be easier to
distinguish from other emotions. The same trend is shown in Table 2: in almost all environ-
ments, sad speech had a higher discriminability index than other emotional speech. The
misrecognition rates of joy and hot anger speech are higher in Table 1, which suggests that
these two emotion categories are easily confused by the listener. Neutral speech had lower
correct recognition rates, and the high misrecognition rates might be due to the experi-
mental procedure. When participants were confused about the emotion of the experiment
stimuli, most chose neutral emotion as the answer.
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Table 1. Mean confusion matrix of vocal-emotion-recognition results (in percent). The confu-
sion matrix is presented as a percentage with stimuli organized vertically and response categories
organized horizontally.

Clean Neutral Joy Cold Anger Sadness Hot Anger

Neutral 62.27 3.65 20.00 6.63 2.73
Joy 22.73 21.82 18.18 1.18 35.45

Cold anger 33.64 1.82 40.00 20.00 4.55
Sadness 4.55 0.00 5.46 90.00 0.00

Hot anger 16.36 2.73 5.46 0.91 74.55

SNR = 5 dB Neutral Joy Cold Anger Sadness Hot Anger

Neutral 96.00 0.00 2.00 2.00 0.00
Joy 4.00 88.00 0.00 2.00 6.00

Cold anger 24.00 0.00 58.00 18.00 0.00
Sadness 0.00 0.00 2.00 98.00 0.00

Hot anger 6.00 10.00 12.00 0.00 72.00

TR = 1.0 s Neutral Joy Cold Anger Sadness Hot Anger

Neutral 86.96 0 4.35 8.70 0.00
Joy 0.00 93.33 0.00 2.22 4.44

Cold anger 30.23 0.00 44.19 25.58 0.00
Sadness 11.11 0.00 4.44 84.44 0.00

Hot anger 17.78 6.67 0.00 0.00 75.56

SNR = 10 dB
TR = 0.5 s Neutral Joy Cold Anger Sadness Hot Anger

Neutral 90.00 0.00 6.00 4.00 0.00
Joy 8.00 80.00 4.00 2.00 6.00

Cold anger 26.00 0.00 58.00 16 .00 0.00
Sadness 4.00 0.00 4.00 92.00 0.00

Hot anger 14.00 14.00 10.00 0 .00 62.00

Table 2. Discrimination index of vocal-emotion-recognition results in clean/noisy/reverberant/noisy
reverberant environments.

d′
p of

Experimental Result Neutral Joy Cold
Anger Sadness Hot

Anger Average

Clean 1.31 1.27 0.91 2.74 1.90 1.63
SNR = 5 dB 3.12 3.14 1.95 3.65 2.75 2.92

TR = 1.0 s 1.97 3.16 1.75 2.11 2.79 2.36
SNR = 10 dB,

TR = 0.5 s 2.73 2.97 2.52 3.44 3.22 2.98

The analysis of the vocal-emotion-recognition results and modulation spectrogram
show a consistent trend. Both evinced that the vocal emotion recognition of sadness
is easier than that of other emotion categories. However, we need more quantitative
evidence to rigorously evaluate the above results. Therefore, to deeply investigate how
MSFs contribute to the perception of vocal emotion recognition, we extracted the MSFs
from the modulation spectrograms then calculated the similarity value between MSFs and
the vocal-emotion-recognition results.
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5.2. Quantitative Analysis: Modulation Spectral Features and Vocal-Emotion-Recognition Results

The results of the highest similarity (over all modulation-frequency channels or over
all acoustic-frequency channels) between each MSF and the vocal-emotion-recognition
results in clean/noisy/reverberant/noisy reverberant environments are shown in Figure 9.
We also selected SNR = 5 dB, TR = 1.0 s, SNR = 10 dB, and TR = 0.5 s as the representative
conditions for each environment. The horizontal axis denotes the ten types of MSFs
extracted from the modulation spectrograms. The value of each bar denotes the similarity
between the vocal-emotion-recognition results and MSFs. The higher the value, the higher
the similarity between these results and MSFs.

If the similarity exceeds 0.4, it is generally considered that the similarity is high. As
illustrated in Figure 9b–d, there are 8, 7, and 10 MSFs that have similarity with the vocal-
emotion-recognition results of over 0.4, respectively. This suggests that the contribution
of the MSFs to NVS vocal emotion recognition cannot be affected by daily noise and
reverberation. It also means that MSFs can be used to explain the vocal-emotion-recognition
results in daily noisy reverberant environments.

The bar graphs for the highest similarity in all daily noisy reverberant environments
are not shown due to the page limitation, but we still want to clarify the following two
issues: (1) whether the conclusion of high similarity between vocal-emotion-recognition
results and MSFs still exists in all daily environments, and (2) whether there exist common
MSFs in all daily environments.

To investigate the similarity between MSFs and vocal-emotion-recognition results in
all daily environments and further determine common features in these environments,
we plotted radar charts, as shown in Figure 10. The different axes represent 10 MSFs,
and the values on each axis represent the similarity values between the vocal-emotion-
recognition results and MSFs. In Figure 10a–f, different colored lines represent different
environments; the results for daily environments are shown with solid lines, and extremely
high noisy and/or reverberant environments are shown with dashed lines. In Figure 10g,h,
all conditions were for daily environments, so that all of the results are represented as solid
lines. This is the same for the bar graphs; the higher the value, the higher the similarity
between the vocal-emotion-recognition results and MSFs. The reason for the existence of
negatively similarity values is shown in Equations (16)–(18). When a certain emotion’s
discriminability index of the vocal-emotion-recognition results or MSFs is lower than the
average discriminability index of all five emotion categories, the similarity calculated using
Equation (16) is negative. The thick black line denotes the similarity of 0.4. The MSFs in
red circles mean that they have similarities with the vocal-emotion-recognition results over
0.4 in all daily environments. These MSFs are considered common MSFs.

As shown in Figure 10a,b, MSSPm, MSKTm, MSKTk, and MSTLk were common MSFs
in all daily noisy environments. As shown in Figure 10c,d, MSSKm, MSKTk, MSTLk, and
MSSKk were common MSFs in all daily reverberant environments. As shown in Figure 10e,f,
MSCRm, MSTLm, MSSKm, MSKTk, MSTLk, MSCRk, and MSSKk were common MSFs in all
daily noisy reverberant environments. As shown in Figure 10g,h, MSKTk and MSTLk were
common MSFs in all daily environments.

Combining all the above radar chart results, the conclusion of high similarity between
the vocal-emotion-recognition results and MSFs exist in all noisy reverberant environments.
We also clarified that there are two common MSFs: MSKTk and MSTLk. In all daily
environments, these two MSFs have a strong relation with the vocal-emotion-recognition
results, which indicates that the important role MSKTk and MSTLk play in the vocal emotion
recognition of NVS is not affected by noise and reverberation.
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Figure 9. Highest similarity of each MSF in clean/noisy/reverberant/noisy reverberant environ-
ments: (a) clean environment [15], (b) noisy environment (SNR = 5 dB), (c) reverberant environment
(TR = 1.0 s), and (d) noisy reverberant environment (SNR = 10 dB, TR = 0.5 s).
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Figure 10. Radar charts of highest similarity of each MSF in clean/noisy/reverberant/
noisy−and−reverberant environments: (a) MSFs in acoustic−frequency domain in all noisy en-
vironments, (b) MSFs in modulation−frequency domain in all noisy environments, (c) MSFs in
acoustic−frequency domain in all reverberant environments, (d) MSFs in modulation−frequency
domain in all reverberant environments, (e) MSFs in acoustic−frequency domain in all noisy re-
verberant environments, (f) MSFs in modulation−frequency domain in all noisy reverberant en-
vironments, (g) MSFs in acoustic−frequency domain in all daily environments, and (h) MSFs in
modulation−frequency domain in all daily environments).
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6. Discussion

In the above analyses, we considered ten MSFs and found that there were high simi-
larities between MSFs and the vocal-emotion-recognition results in the noisy reverberant
environments. We also clarified that there are two common MSFs (MSKTk and MSTLk) in
all daily environments.

We focused on specific MSFs and discussed the contributions of two common MSFs
to vocal emotion recognition from the following two perspectives: the emotion percep-
tion characteristics of different emotions, and the different properties of acoustic- and
modulation-frequency channels. The distribution of each MSF in each emotion is a real-
valued random variable, and it has a finite mean and variance. Therefore, this study
assumed that the distribution of each MSF in each emotion conforms to a normal distri-
bution. As shown in Figure 11, we estimated its distribution using the probability density
functions (PDFs) of the normal distribution; µ and σ2 are the mean and variance of each
MSF taken across the 10 utterances of each emotion, which are the same as shown in
Equation (15). Figure 11a–d represent the four environments, and the PDF results of MSKTk
and MSTLk are shown in order from top to bottom in each environment; the five colors
represent five different emotions, where K means the Kth acoustic frequency channel. Due
to the page limitation, only the highest similarity (from the first to fourth acoustic-frequency
channel) of each MSF is shown in Figure 11.
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Figure 11. PDFs of MSKTk and MSTLk for each emotion in noisy/reverberant/noisy reverberant
environments. Only MSFs with highest similarity are shown: (a) clean environment [15], (b) noisy
environment (SNR = 5 dB), (c) reverberant environment (TR = 1.0 s), and (d) noisy reverberant
environment (SNR = 10 dB, TR = 0.5 s).

In Figure 11, MSTLk’s PDFs of sadness have less overlap with other emotions, as
explained in Section 4, and the d̄′MSF represents the physical distance of the MSFs between
different emotions. Therefore, the large distance between sadness and other emotions
indicates that using MSTLk makes it easier to distinguish sadness from other emotions. The
reason can be explained by the emotion-perception characteristic of sadness. Sad speech
is a type of breathy speech produced when the vocal fold motion is not broad enough to
close the glottis completely during the vibration cycle. This phenomenon perceptually
decreases the loudness of the speech unit produced, so that a breathy voice has a spectrum
with a strong slope. Conversely, for loud speech, such as hot-anger speech and joyous
speech, which see a rapid closure of the vocal folds and a short open phase of the glottis, the
spectral envelope is flatter (the spectral tilt is less) [24–26]. Combining the analysis of sad
speech, as the results show in Figure 8, we can also see that sadness has a different power
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pattern in time-average modulation representation. In all environments, only sadness had a
lower RMS in the second and third acoustic-frequency channels than in the first and fourth.
This might also be due to sad speech being more breathy than other emotional speech. It is
known that breathy voices are characterized by a steep decrease in spectral level from the
0–2 to the 2–5 kHz band. Conversely, “vocal fry/creaky” voices, such as those for hot anger
and joy, were correlated with a steep decrease in level from the 2–5 to 5–8 kHz band [24,27].
As we can see in the time-average modulation representation in Figure 8, sadness has an
RMS that steeply decreased in the lower acoustic-frequency range. Hot anger and joy had
RMSs that steeply decreased in the higher acoustic-frequency range. Consequently, MSTLk
is important in sadness recognition.

For both MSKTk and MSTLk, in most environments there was less overlap between
sadness and other emotions. As shown in Figure 11a,d, for the PDF of MSTLk, sadness and
hot anger hardly overlapped, which indicates that by using these common features, it is
easy to distinguish sadness from hot anger. Both common MSFs are in the modulation-
frequency domain (calculated by six modulation frequency channels); no MSFs in the
acoustic-frequency domain (calculated by four acoustic frequency channels) is regarded
as a common feature contributing to vocal emotion recognition in all daily environments.
The reason might be the different properties between acoustic- and modulation-frequency
channels shown in Figure 8. Different power patterns of five emotions were only obvious
in the modulation-frequency domain, suggesting no significant difference in the acoustic-
frequency domain. Therefore, the MSFs that reflect the characteristics of six modulation-
frequency channels are more important in vocal emotion recognition.

Common MSFs contribute to vocal emotion recognition, which might be due to their
emotion-perception characteristics. For example, the relationship between the breathy
voice and spectral tilt makes the spectral tilt possibly account for the perception of vocal
emotion recognition. Moreover, the differentiating properties of acoustic- and modulation-
frequency channels are useful in the explanation of different performances of MSFs when
distinguishing different emotions. We used the vocal-emotion-recognition results in noisy
reverberant environments [17], which involved NVS simulations with normal-hearing
listeners to predict the responses from CI listeners. One study on the important role of
temporal cues in speaker identification for simulated CIs also suggested that temporal
modulation cues contribute to speaker identification and have the potential to improve
speaker identification if enhanced [28]. Therefore, the results of this study also indicate that
MSFs might have the potential to be used in the explanation of nonlinguistic information
perception when using CIs, such as vocal emotion recognition and speaker identification in
noisy reverberant environments.

7. Conclusions

We investigated the contribution of MSFs to vocal emotion recognition of NVS in noisy
and/or reverberant environments. To clarify the relationship between MSFs and previous
results from vocal-emotion-recognition experiments in noisy and/or reverberant environ-
ments, we analyzed the results of those experiments regarding NVS, and then obtained
modulation spectrograms of NVS by using an auditory-based modulation filterbank and
extracted MSFs from modulation spectrograms. We then calculated the similarity between
MSFs and the vocal-emotion-recognition results. The qualitative analysis between modula-
tion spectrograms and discrimination index of the vocal-emotion-recognition results and
the quantitative analysis between MSFs and these results indicate that

1. MSFs can be used to explain the results of vocal emotion recognition in noisy and/or
reverberant environments. Except for extremely high noisy reverberant environments,
in daily environments, the contribution of MSFs in vocal emotion recognition is not
affected by noise and reverberation.

2. There are two common MSFs (MSKTk (modulation spectral kurtosis) and MSTLk
(modulation spectral tilt)) that have high similarity with the vocal-emotion-recognition
results in all daily environments.
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MSFs, especially the two common MSFs, are considered to play an important role in
vocal emotion recognition, and are considered to have the potential to be used in the expla-
nation of nonlinguistic information perception by using CIs in noisy and/or reverberant
environments, which still requires further research. For future work, due to the Fujitsu
Japanese Emotional Speech Database used in this study being created using a professional
actress (containing five clear acted emotions), these emotions can be considered the typ-
ical representations of diverse emotions, but they may differ from the emotional speech
communication in our daily lives (containing ambiguous natural emotions). Therefore, it is
necessary to use more natural emotion databases containing more emotions to examine the
contribution of MSFs to vocal emotion recognition in daily communication.
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