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ABSTRACT

The collection of large amounts of labeled data for speech

emotion recognition requires considerable time and effort. As

a result, the sizes of existing corpora are limited. One promis-

ing solution to this difficulty is semi-supervised learning, i.e.,

learning from both labeled and unlabeled data. In this study,

we applied the noisy student training (NST) method to speech

emotion recognition. We experimentally investigate the trade-

off between the amount and reliability of labeled data. For

this purpose, we prepared labeled and unlabeled data by lim-

iting the available annotations in the CREMA-D dataset. The

experimental results showed that a model trained using the

NST method with some of the annotations achieved almost

the same performance as the one trained using supervised

learning with all the annotations if the amount and reliabil-

ity of the available annotations were appropriate. Our find-

ings are significant in identifying the most efficient labeling

strategy when utilizing a large-scale dataset without labels for

speech emotion recognition.

Index Terms— speech emotion recognition, semisuper-

vised learning, noisy student training

1. INTRODUCTION

A large-scale corpus for speech emotion recognition (SER)

is challenging to build. One of the reasons is that emotion

classification is partially subjective. An emotion expressed

by a speaker does not always match one perceived by a lis-

tener. Furthermore, listeners’ perceptual evaluations do not

necessarily agree with each other because their sensitivities

and biases vary widely. Consequently, we need to ask many

annotators to perform the task of classifying each utterance by

emotion. In fact, 3 annotators, 6 to 12 annotators, and 20 an-

notators are assigned to each utterance in [1], [2], and [3, 4],

respectively. The majority voting method is commonly used

to aggregate the answers from annotators and determine the

emotion label. More sophisticated statistical methods pro-

posed in [5, 6, 7, 8] can also be used. These methods may

reduce the number of annotators per utterance required to de-

cide the emotion labels with high reliability. However, it still

requires much time and effort to collect a large number of la-

beled data for SER. One promising solution to overcome the

scarcity of labeled data is to utilize unlabeled data in addition

to labeled data.

In some previous studies, unlabeled speech data was used

for SER. For example, an unsupervised autoencoder was

combined with a supervised emotion classifier in [9, 10, 11].

In [12], an autoencoder-based model was extended with

adversarial learning and multi-task learning that consisted

of emotion classification, speaker recognition, and gender

recognition. An intrinsic limitation of an unsupervised

autoencoder-based model is that irrelevant information is

inevitably retained in the autoencoder. Hence, the emotion

classifier should be trained to extract relevant features using

labeled data.

In this study, we applied the noisy student training (NST)

method [13] to SER to investigate how to utilize unlabeled

data efficiently. NST is a variant of the self-training method

that uses a teacher model trained using labeled data to infer

soft labels of unlabeled data. Labels inferred in this man-

ner are referred to as pseudo labels. The original labeled

data and the pseudo labeled data are used to train a student

model, which replaces the old teacher model. This process is

repeated over multiple generations. One of the self-training

method’s problems is that errors in the inference of pseudo

labels are amplified as the generation progresses. Data aug-

mentation with class balancing using oversampling and filter-

ing of pseudo labeled data are introduced in the NST method

to ensure data integrity. The self-training method was used

for multimodal emotion recognition in [14], where collabora-

tive semi-supervised learning was proposed to correct misla-

beled samples. The effectiveness of NST for image classifi-

cation [13], automatic speech recognition [15], keyword spot-

ting [16], and singing voice separation [17] was investigated

in previous studies.

We note that whether or not the NST method is effective

for SER because SER is partially subjective. The emotion ex-

pressed in speech is often ambiguous and can be perceived

differently between listeners. In other words, not all utter-

ances definitely belong to one of the given emotion classes.

Therefore, it is inevitable that unlabeled data includes a sig-

nificant number of utterances whose “correct” emotion class

is ambiguous. Such utterances may hinder the effectiveness

of the NST method. This characteristic of SER contrasts

with other tasks that NST was applied to in previous stud-



ies [13, 15, 16, 17]. In this study, we experimentally demon-

strated the effectiveness of the NST method for the SER task

regardless of its subjectivity.

Specifically, we address the trade-off between the amount

and reliability of labeled data. Previous studies showed that

the performance improvement becomes more substantial as

the amount of labeled data becomes larger [9, 10]. However,

the effectiveness of semi-supervised learning should also rely

on the reliability of labeled data. If we increase the num-

ber of annotators per utterance, then we can obtain more re-

liable labels using the majority voting method as studied in

[3, 4], whereas much more time and effort are required. Con-

sequently, we are forced to reduce the number of labeled ut-

terances. Therefore, we must consider the balance between

the amount and reliability of labeled data if we suppose the

total cost for preparing labeled data is fixed.

To investigate the effect of the amount and reliability of

labeled data on the performance improvement by utilizing

unlabeled data using the NST method, we limit the number

of available annotations in an existing emotional speech cor-

pus, the crowdsourced emotional multimodal actors dataset

(CREMA-D) [2], and examine different labeling strategies:

quantity-first and quality-first. Furthermore, we compared

hard and soft labels to determine the best way to utilize the

initial labeled data. It was reported in [18, 19] that the use of

soft labels provides better performance of SER by supervised

learning. In this study, we aim to investigate whether soft la-

bels are beneficial when using semi-supervised learning. The

findings of this study are significant for identifying the most

efficient annotation strategy for utilizing a large-scale emo-

tional speech dataset without labels.

2. METHODS

2.1. Noisy Student Training

This section briefly reviews the NST method and explains

the data and model used in this study. We use NST as the

semi-supervised learning method, which was applied to im-

age recognition in [13] and automatic speech recognition in

[15]. The algorithm of NST is summarized as follows:

1. Train a teacher model Mt using the labeled data with data

augmentation.

2. Infer pseudo labels of each sample in the unlabeled data

using the teacher model. Filter the unlabeled data on the

basis of the pseudo labels.

3. Train a student model Ms using both the labeled data and

the filtered unlabeled data with data augmentation.

4. Set the student model as the teacher model Mt := Ms at

the next generation, and repeat Step 2 to Step 4.

The pseudo labels can be soft or hard. We refer to the model

trained using supervised learning with only labeled data as the
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Fig. 1: Data preparation process. For simplicity, it is ignored

that not all utterances were classified by each annotator.

zeroth generation. The models at the precedent generation are

trained using the NST method with unlabeled data.

2.1.1. Data augmentation

We used three data augmentation methods: adding noise,

adding reverberation, and SpecAugment [20]. We balance

the training data for each emotion class by oversampling with

these data augmentation methods.

2.1.2. Filtering

At each generation, unlabeled data is filtered on the basis of

the pseudo labels inferred by the teacher model. The filter-

ing operation is applied generation by generation gradually

so that utterances with higher scores are used for training at

an earlier generation. In other words, restrictive and permis-

sive filtering is imposed at early and late generations.

2.2. Data preparation

Assuming that multiple annotators classify each utterance

into one of predefined emotion classes, we introduce some

terminology. An utterance is referred to as emotion-definite

if the label decided using majority voting by the annotators

agrees with the one intended by the speaker. Otherwise, it is

referred to as emotion-ambiguous. We note that this is not

the only possible criterion to discriminate between emotion-

definite and emotion-ambiguous utterances. If the emotion

classes intended by the speakers are not available, e.g., in

the case of a spontaneous emotion corpus, we may classify a

given utterance based only on voting by annotators. There-

fore, our method can also be applied to spontaneous emotion

corpora.The discrimination between emotion-definite and

emotion-ambiguous utterances depends on which annota-

tions are used. If not specified explicitly, the discrimination

is supposed to be performed using all annotations in a given

corpus.



Table 1: Statistics of the initial data.

Available annotation ratio r 1.0 0.5 0.5 0.25 0.25 0.25

Annotations per utterance a 12 12 5 12 5 3

Labeled data size |Lr,a| 3,085 1,551 2,845 770 1,373 2,272

Unlabeled data size |Ur,a| 4,356 5,890 4,596 6,671 6,068 5,168

Label quality qr,a 1.0 1.0 0.897 1.0 0.903 0.856

We extract the labeled and unlabeled data from an exist-

ing emotional speech corpus, discarding part of the annota-

tions. Fig. 1 illustrates the data preparation process. In this

study, we evaluate the effectiveness of different strategies on

preparing labeled data for semi-supervised learning. For this

purpose, we impose the number of available annotations. Un-

der this condition, there are two opposite directions concern-

ing the annotation strategy. One direction is to prioritize the

number of labeled utterances, sacrificing their reliability. The

other is to give priority to the reliability of labels, sacrificing

the amount. By comparing these strategies, we investigate the

trade-off between the amount and reliability of labeled data

for semi-supervised learning. We note that labeled and unla-

beled data obtained in this manner belong to the same domain.

Hence, there is no domain mismatch between them.

The data preparation process consists of two steps: selec-

tion of annotations and labeling of utterances. In the first step,

we fix the number of available annotations to obtain labeled

data. The ratio to all annotations in the original corpus is de-

noted by r. Moreover, we set the upper limit of the number of

annotations for each utterance to a. Ignoring that part of the

selected utterances may have less than a annotations, a rep-

resents the number of annotations per utterance. We can say

that a represents the annotation strategy under a given cost

constraint. Then, we select a subset of utterances from the

original corpus so that the total number of annotations does

not exceed the specified value. Here, utterances with more an-

notations are chosen first. No remaining annotations are used

for training. While the label reliability becomes higher as we

increase the number of annotations per utterance [9, 10], the

amount of labeled data becomes smaller with the fixed num-

ber of available annotations. In short, r determines the num-

ber of available annotations, whereas a controls the balance

between the amount and reliability of the labeled data.

In the second step, we divide the original corpus into la-

beled and unlabeled datasets using the selected annotations.

Each of the selected utterances is classified as labeled data if

it is emotion-definite. Here, only the selected annotations are

used to determine an utterance is emotion-definite or emotion-

ambiguous. The other utterances are classified as unlabeled

data. The unlabeled dataset consists of the utterances that

were not selected at the first step and the emotion-ambiguous

utterances. The labeled and unlabeled datasets obtained in

this manner are denoted by Lr,a, Ur,a, respectively. L and

U denote the labeled and unlabeled datasets when all anno-

tations are used, which are the same as the sets of emotion-

definite and emotion-ambiguous utterances, respectively. The

quality qr,a of the labeled dataset Lr,a can be estimated as the

ratio of utterances whose labels are “correct.” Here, labels in

the emotion-definite dataset L, determined using all annota-

tions and the actors’ intention, are supposed to be “correct,”

whereas this is not the only definition. We note that if an ut-

terance in the labeled dataset Lr,a is classified to the emotion-

ambiguous dataset U , then it is counted as an incorrect label.

2.3. Model

We use an attention-based convolutional recurrent neural net-

work (ACRNN) model that is equivalent to that investigated

in [21]. This network consists of two convolutional layers,

one time-distributed fully-connected layer, one bidirectional

recurrent layer, one attention layer, one fully-connected layer,

and one softmax layer. ACRNN is known to be efficient for

SER [22, 23, 24, 25]. A 40-dimensional log mel-spectrogram

was used as the input features calculated with a window size

of 25 ms and a window shift of 10 ms. We applied z-score

normalization to the input features.

3. EXPERIMENTS

3.1. Setup

In our experiments, we used the CREMA-D [2], which con-

sists of 7,442 utterances by 91 actors, as the original cor-

pus. The actors read aloud given sentences expressing one of

the six emotions: neutral, happiness, sadness, anger, disgust,

and fear. Crowdsourced annotators classified the emotion and

rated the intensity of emotion level of presented utterances

on the audio-only, visual-only, or audio-visual information.

Between these types of annotations, we used all 73,058 cate-

gorical annotations based on audio-only information. 6 to 12

annotators evaluated each utterance. Therefore, the maximum

value of the number of annotations per utterance is 12.

We trained the ACRNN model up to the fifth generation

using the NST method. In other words, the final generation

in our experiments was the fifth generation. Specifically, we

compared the performance of the model trained on different

labeled and unlabeled datasets at the zeroth generation shown

in Table 1. We examined two ways of labeling for the initial

labeled data: hard and soft labels. A hard label gives a value



of one to the emotion class that receives the most votes by an-

notators and a value of zero to the other classes. A soft label

is obtained as a ratio of the number of votes received by each

emotion class to the total number of votes. Conversely, we

defined the pseudo labels assigned to the unlabeled utterances

in the NST method as soft in our experiments. The utterances

with scores in the top 20%, 40%, 60%, 80%, and 100% of

unlabeled data were selected at each generation. Therefore,

the size of training data grows linearly with each generation.

Note that not only emotion-definite utterances that are not an-

notated but also emotion-ambiguous utterances are inevitably

used in the training of student models.

For the data augmentation during training, we added noise

signals from the DEMAND database [26] to each utterance

with a signal-to-ratio (SNR) chosen from the uniform dis-

tributed from 0 to 30 dB randomly. Moreover, we randomly

chose a room impulse response from the BIRD database [27]

and convolved it for each utterance. Furthermore, we set the

time wrapping, time masking, and frequency masking param-

eters of SpecAugment to 20, 15, and 100, respectively.

We evaluated the performance in F1 score using 10-fold

leave-one-speaker-group-out cross-validation. The 91 speak-

ers in the corpus were divided into ten groups, each of which

included 9 or 10 speakers. All samples were grouped into

three sets based on the speaker groups: eight groups for train-

ing, another group for validation, and the last group for test-

ing. From the training set, we chose the initial labeled data

based on the limited annotation. The validation set was used

to select the best generation and epoch. For testing, the utter-

ances belonging to the emotion-definite dataset determined

using all annotations, or namely L = L1.0,12, were used.

The emotion-ambiguous utterances were eliminated from

testing. Hence, the training and developing sets were depen-

dent on r and a, while the test set was not. In other words, the

evaluation was conducted using the “correct” labels.

3.2. Results

The results of our experiments are shown in Table 2. We note

that the zeroth-generation model was trained using supervised

learning only on the initial labeled data. The final-generation

model was trained using the NST method. Therefore, the dif-

ference in performance between the zeroth- and final- genera-

tion models represents the improvement achieved by utilizing

the unlabeled data. According to the results, the hard label

outperformed the soft label under all conditions. When all

the annotations were available (r = 1.0), there was almost

no significant performance improvement by the NST method.

This result indicates that adding emotion-ambiguous utter-

ances to the training dataset does not bring significant benefits

nor drawbacks.

On the other hand, the models trained using the NST

method on both the labeled and unlabeled data outperformed

those trained using supervised learning only on the same

Table 2: F1 scores. r denotes the ratio of available annota-

tions; a denotes the number of annotations for each utterance.

Column titled label represents labeling type of the initial data.

r a Label
Generation

zeroth final

1.0 12 hard 0.721 0.727

1.0 12 soft 0.681 0.717

0.5 12 hard 0.643 0.680

0.5 12 soft 0.641 0.647

0.5 5 hard 0.705 0.722

0.5 5 soft 0.673 0.677

0.25 12 hard 0.635 0.650

0.25 12 soft 0.587 0.628

0.25 5 hard 0.659 0.676

0.25 5 soft 0.637 0.647

0.25 3 hard 0.703 0.705

0.25 3 soft 0.654 0.677

labeled data for all conditions on a when only part of the

annotations were available (i.e., r = 0.5, 0.25). For exam-

ple, the improvement in the F1 score between the zeroth and

final generations with the hard initial label was 0.037 when

(r, a) = (0.5, 12). The p-value, effect size, and power were

0.001, 1.38, and 0.97 in a paired t-test based on 10-fold cross-

validation with the significance level of 0.05 [28, 29]. These

results indicate that semi-supervised learning, or utilizing

unlabeled data, contributes to improving the performance of

SER regardless of the inclusion of utterances whose emo-

tion is ambiguous in the unlabeled data. In particular, when

half the annotations were available (r = 0.5), the annotation

strategy of five annotators per utterance (a = 5) achieved the

best performance. The difference in the F1 score between

a = 5 and a = 12 at the final generation with the hard initial

label was 0.043. The p-value, effect size, and power were

0.017, 0.91, and 0.73 in the same t-test as above.When the

ratio of available annotations was one quarter (r = 0.25), the

annotation strategy of three annotators per utterance (a = 3)

was the best, whereas the performance improvement by NST

is tiny. We note that there was no deterioration in the per-

formance by using the NST method under all conditions

examined in this study. To summarize, our experiments show

that semi-supervised learning is beneficial for improving the

performance of SER when we adopt an appropriate labeling

strategy for the preparation of initial labeled data, even if the

unlabeled data includes utterances with ambiguous emotion.

4. DISCUSSION

4.1. Analysis

In this section, we analyze the results of our experiments fur-

ther. Below, we let (r, a) denote a condition on the available
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annotations ratio and the number of annotations per utterance.

Moreover, as the initial data with hard labels outperformed

that with soft labels as shown in Table 2, we focus on the

former case.

Two major factors affect the effectiveness of NST for

SER: the amount and reliability of the initial labeled data.

With the fixed number of available annotations, there is a

trade-off between these two factors, which is controlled by

the number of annotations per utterance, namely a. In Table

1, we can see that increasing the number of annotators per

utterance a results in a large drop in the initial labeled data

size |Lr,a|, whereas it resulted in only a small improvement

in the initial label quality q. This observation suggests that

we do not significantly benefit from increasing a. This is

supported by the results in Fig. 2 that show the relationship

between the initial labeled data size |Lr,a| and the final F1

score. The results shown in this figure indicate that the over-

all performance of SER obtained using the NST method is

mainly affected by the amount of initial labeled data, as long

as its reliability remains at an acceptable level. Note that

we did not examine an extremely small value of a, such as

a single annotator per utterance, because the initial data ob-

tained under such a condition tends to be inconsistent and

lacks integrity. In the case of the CREMA-D dataset, five
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annotators per utterance were sufficient to resolve most of

the subjectivity of emotion classification and benefit from the

NST method.

The effect of the initial labeled data size can be under-

stood in the following way. Fig. 3 shows the F1 scores up to

each generation. When we increase a with a fixed value of

r, we obtain a small number of utterances with highly reli-

able labels. Owing to an insufficient amount of training data,

a model trained using supervised learning on such small-size

initial labeled data results in low generalization performance.

On the other hand, if the value a is small, many utterances

with moderately reliable labels are obtained. With the ben-

efit of a large amount of training data, we can train a model

with high generalization performance using supervised learn-

ing. Furthermore, the high or low F1 scores at the zeroth

generation cascaded through the generations during the NST

process, consequently resulting in high or low final F1 scores,

as shown in Fig. 3. In other words, the annotation strategy

represented by a that achieved the best performance at the ze-

roth generation also achieved the best performance at the final

generation, compared with the same number of available an-

notations, i.e., the same value of r. Therefore, a large amount

of initial labeled data with moderate reliability results in high

performance after the NST process.



Next, we consider the effect of the pseudo label reliabil-

ity. The error in the inference of pseudo labels is amplified as

the generation progresses. Therefore, we need to prevent the

occurrence of “incorrect” pseudo labels to obtain a high per-

formance using the NST method. Here, we define the correct-

ness of a pseudo label in the following way: First, we classify

an emotion-definite utterance into the emotion class with the

highest score on its pseudo label. If the class determined in

this manner is the same as the “correct” class determined us-

ing all annotations in the original corpus, then the pseudo la-

bel is judged as correct; otherwise, it is incorrect. In addition,

we introduce an important quantity denoted by eg: the ratio

of emotion-definite utterances with incorrect pseudo labels in

the training data at the generation g. As only the initial la-

beled data was used at the zeroth generation, e0 is 0.0. Fig. 4

and 5 show the eg at each generation and the relationship be-

tween e1 and the final F1 score, respectively. In Fig. 4, we can

observe that if the degree of error in the inference of pseudo

labels was low in the first generation, then it remained low

as the generation progressed. Consequently, the annotation

strategies that started with lower eg values achieved higher

performance, as measured by the F1 score at the final gener-

ation; this is shown in Fig. 5. Therefore, we can say that a

low eg (i.e., reliable pseudo labels) is a good indicator of how

well the NST method is working.

Moreover, we consider the effect of emotion-ambiguous

utterances. When r = 1.0, i.e., all annotations in the orig-

inal corpus were used, the unlabeled data consisted only of

emotion-ambiguous utterances. Under this condition, we

found no degradation in the performance, as measured by

the final F1 score, as shown in Table 2. This indicates that

the NST method contributes to improving performance, even

though emotion-ambiguous utterances are inevitably included

in a dataset for SER.

4.2. Application on new data

Finally, we discuss how a new dataset for SER should be an-

notated when the NST method is assumed to be used. The op-

timal number of annotations per utterance with a fixed number

of total annotations is not necessarily the same among differ-

ent datasets. It may be influenced by various characteristics

of the dataset, such as style (acted or spontaneous), situation

(script reading or improvisation), recording environment, lan-

guage, and culture. Therefore, we need to find the optimal

annotation strategy depending on each dataset.

In the following, we describe a method for annotating a

new dataset for SER based on the findings from our experi-

ments: First, we randomly choose a small subset of speakers

and their utterances, which is referred to as an evaluation set.

Each utterance in the evaluation set should be classified by a

sufficient number of annotators such that we can determine

their “correct” labels. According to previous studies [3, 4],

20 annotators per utterance are sufficient in most cases. It

is important to note that we cannot know the “correct” la-

bels of all utterances in a new dataset without a vast number

of annotations, which required considerable time and effort.

Furthermore, we choose an indicator of how well the current

annotation data is. There are several candidate indicators: the

F1 score of the model trained using supervised learning, the

F1 score of the final-generation model trained using NST, and

the ratio of emotion-definite utterances with incorrect pseudo

labels in the training data eg . The value of the indicator I

should be calculated solely on the evaluation set because it

requires “correct” labels. Finally, we perform the main anno-

tation process in the following way:

1. Set the ratio of the utterances to be annotated s and the

number of annotators per utterance a to initial values s0
and a0, respectively.

2. Randomly choose utterances and annotate them under the

condition of s = s0 and a = a0.

3. Increase a and add annotations until I saturates.

4. Increase s and add annotations until I saturates.

5. Repeat Step 3 to Step 4 until the total number of annota-

tions reaches the upper limit.

The evaluation set should be eliminated from the target of the

main annotation process and used solely to evaluate the value

of the indicator.

5. SUMMARY

We investigated the utilization of unlabeled data for SER to

reveal efficient labeling strategies in preparing initial labeled

data, considering the trade-off between its amount and re-

liability. For this purpose, we limited the available anno-

tations in the CREMA-D dataset and trained the ACRNN

model using the NST method with different conditions on

the available annotation ratio and the upper limit of anno-

tations per utterance. Furthermore, we examined hard and

soft labels concerning the initial labeled data. Our exper-

iments showed that the semi-supervised models trained on

both the labeled and unlabeled data outperformed the super-

vised model trained solely on the same labeled data. How-

ever, the degree of performance improvement is greatly in-

fluenced by the manner in which the initial labeled data is

prepared. Our experiments indicate that we should increase

the amount of labeled data with moderate reliability to mak-

ing the most of given unlabeled data rather than increasing the

reliability of a small amount of labeled data.

This study suggests that it is essential to consider the

trade-off between the amount and reliability of labeled data

when using a semi-supervised learning method. The efficient

labeling strategy revealed in this study is significant when uti-

lizing a large-scale dataset without emotion labels, including

public domain video archives.
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